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Abstract  

A modified k-e model is proposed for the simulation of the mean wind speed and turbulence 
for a neutrally-stratified flow through and over a building array, where groups of buildings 
in the array are aggregated and treated as a porous barrier. This model is based on time 
averaging the spatially-averaged Navier-Stokes equation, in which the effects of the obstacle- 
atmosphere interaction are included through the introduction of a volumetric momentum 
sink (representing drag on the unresolved buildings in the array). In addition, closure of 
the time-averaged, spatially-averaged Navier-Stokes equations requires two additional prog- 
nostic equations, namely one for the time-averaged sub-filter kinetic energy, 7c, and another 
for the dissipation rate, e, of 7c. The transport equation for 7c can be derived from first 
principles and explicitly includes additional sources and sinks that arise from time aver- 
aging the product of the spatially-averaged velocity fluctuations and the distributed drag 
force fluctuations. The latter time-averaged product can be approximated systematically 
to any degree of accuracy using a Taylor series expansion and, to this end, a high-order 
approximation is derived to represent this source/sink term in the transport equation for 7c 
which corresponds physically to the work done against pressure (form) and viscous drag in 
the building array. The dissipation rate (e-) equation is simply obtained as a dimensionally 
consistent analog of the 7c-equation. 

Because measurements of the spatially-averaged velocity statistics in obstacle arrays are 
not available, the performance of the proposed model and some simplified versions derived 
from it are compared with the spatially-averaged, time-mean velocity and various spatially- 
averaged Reynolds stresses diagnosed from high-resolution computational fluid dynamics 
(CFD) simulations of the flow within and over an aligned array of sharp-edged cubes with 
a plan area density of 0.25. However, it should be emphasized that the high-resolution 
CFD flow simulations have been validated with wind tunnel experiments, and after these 
validations the model can be used to diagnose the spatially-averaged velocity statistics 
required for the validation of the distributed drag force model. It was found that the 
model predictions for mean wind speed and turbulence in the building array were not 
sensitive to the differing treatments of the source and sink terms in the 7c- and e-equations, 
implying that the high-order approximations of these source/sink terms did not offer any 
predictive advantage. A possible explanation for this is the utilization of the Boussinesq 
linear stress-strain constitutive relation within the k-e modelling framework, whose implicit 
omission of any anisotropic eddy-viscosity effects renders it incapable of predicting any 
strong anisotropy of the turbulence field that might exist in the building array. Four different 
methods for diagnosis of the drag coefficient CD for the aligned cube array, required for the 
volumetric drag force representation of the cubes, are investigated here. 
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Resume  _ __       

Un modele modifie Jfc-e a ete propose pour simuler la vitesse et la turbulence moyennes du 
vent pour des ecoulements d'air de stratification neutre, ä travers et par-dessus une matrice de 
bätiments. Ä l'inteneur de la matrice, des groupes de bätiments ont 6t6 agreges et traites 
comme une barriere poreuse. Ce modele est base sur le calcul des moyennes en temps et en 
espace de liquation Navier-Stokes dans lequel les effets de I'interaction entre les obstacles et 
l'atmosphere sont inclus au moyen de 1'introduction d'un accumulateur des impulsions 
volumetriquese (repr&entant la trainee sur les bätiments non resolus dans la matrice). De 
plus, la fermeture des equations Navier-Stokes, dont les moyennes en temps et espace ont 6t6 
calculees exigent deux equations de prevision supplementaires, ä savoir, une Equation pour 
Energie cinetique sous-filtre Jc dont les moyennes ont <§te calculees et une autre Equation 
pour le taux de dissipation e, de K . Liquation de transport pour K peut Stre denvee a partir 
des principes de base et peut inclure explicitement des sources et des puits additionnels 
provenant du calcul des moyennes en temps du produit des fluctuations des vitesses moyennes 
en espace et des fluctuations de la force distribuee de trainee. Ce dernier produit aux 
moyennes calculees peut etre evalue" systematiquement ä n'importe quel niveau d'exactitude 
en utilisant une expansion de la serie de Taylor et, ä cet effet, une approximation d'ordre 
superieur est d6riv6e pour representer ce terme de la source ou de puits dans l'equation de 
transport pour vqui correspond au travail physiquement accompli contre la pression (forme) 
et la trainee visqueuse, ä l'interieur de la matrice de bätiments. L'equation du taux de 
dissipation (e-) est simplement obtenue comme un analogue de dimension constante de 
l'equation K. 

La prise de mesures des statistiques de vitesse moyenne en espace n'etant pas possible ä 
l'interieur des matrices d'obstacles, le rendement du modele propose et de celui de quelques 
versions simplifies qui en sont derivees, sont compares avec la moyenne des vitesses 
moyennes en espace et de certains efforts de Reynold moyens en espace diagnostiques ä partir 
de simulations ä haute resolution de la dynamique numerique des fluides de l'ecoulement ä 
l'interieur et par-dessus la matrice de cubes ä angles vifs alignes d'une masse surfacique de 
0,25. II faut souligner, cependant, que les simulations d'ecoulement de la dynamique 
numerique des fluides ä haute resolution ont £te validees par des essais dans des tunnels 
aerodynamiques et qu'apres avoir 6te valide, le modele peut etre utilise pour diagnostiquer les 
statistiques de vitesse moyennes en espacerequises pour la validation du modele de la force 
distribuee de la trainee. On a trouve" que les predictions de modeles pour la vitesse et la 
turbulence moyennes du vent dans la matrice des bätiments ne sont pas_sensibles aux 
differents traitements des termes de la source et de puits dans les equations K - et s-, ce qui 
implique que les approximations superieures des termes de sources de puits n'offrent aucun 
avantage en ce qui concerne la prediction. II est possible d'expliquer ceci par la relation 
constitutive de la theorie de Boussinesq, ä l'interieur du contexte de modelisation k-e, dont 
l'omission implicite des effets anisotropiques de viscosity turbulente le rende incapable de 
predire aucune anisotropie forte du champ de la turbulence qui pourrait exister dans la matrice 
des bätiments. On etudie ici quatre m&hodes differentes de diagnostic du coefficient CD de la 
trainee concernant la matrice de cubes alignes requise pour representer la force de la trainee 
des cubes. 
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Executive summary 

Introduction: It is anticipated that Canadian Forces (CF) in the foreseeable future will 
have to fight in or protect urban areas, whether in battle, peace-making, peacekeeping, 
or counter-terrorist operations. The increased awareness and importance accorded by the 
public worldwide and their governments to maintain appropriate defences against chemical 
and biological warfare (CBW) agents in an urban (built-up) environment, the prediction 
of casualties and human performance degradation resulting from such releases, and the 
development of operational procedures and regulations to control, mitigate, and monitor the 
fate of CBW agents in urban areas with high population densities, will require mathematical 
modeling of urban wind flows and dispersion. In this regard, it should be noted that the 
prediction of flows in the urban environment is in principle pre-requisite to or co-requisite 
with the prediction of contaminant (e.g., CBW agent) dispersion within a cityscape. 

Results: A modified k-e model is proposed for the simulation of the mean wind speed 
and turbulence for a neutrally-stratified flow through and over a building array, where 
groups of buildings in the array are aggregated and treated as a porous barrier. This 
model is based on time averaging the spatially-averaged Navier-Stokes equation, in which 
the effects of the obstacle-atmosphere interaction are included through the introduction of a 
volumetric momentum sink (representing drag on the unresolved buildings in the array). In 
addition, closure of the time-averaged, spatially-averaged Navier-Stokes equations requires 
two additional prognostic equations, namely one for the time-averaged sub-filter kinetic 
energy, 7c, and another for the dissipation rate, e, of 7c. The transport equation for 7c can be 
derived from first principles and explicitly includes additional sources and sinks that arise 
from time averaging the product of the spatially-averaged velocity fluctuations and the 
distributed drag force fluctuations. The latter time-averaged product can be approximated 
systematically to any degree of accuracy using a Taylor series expansion and, to this end, 
a high-order approximation is derived to represent this source/sink term in the transport 
equation for K which corresponds physically to the work done against pressure (form) and 
viscous drag in the building array. The dissipation rate (e-) equation is simply obtained as 
a dimensionally consistent analog of the Tc-equation. 

The performance of the proposed model and some simplified versions derived from it are 
compared with the spatially-averaged, time-mean velocity and various spatially-averaged 
Reynolds stresses diagnosed from high-resolution computational fluid dynamics (CFD) sim- 
ulations of the flow within and over an aligned array of sharp-edged cubes with a plan area 
density of 0.25. It was found that the model predictions for mean wind speed and turbu- 
lence in the building array were not sensitive to the differing treatments of the source and 
sink terms in the 7c- and e-equations, implying that the high-order approximations of these 
source/sink terms did not offer any predictive advantage. A possible explanation for this 
is the utilization of the Boussinesq linear stress-strain constitutive relation within the k-e 
modelling framework, whose implicit omission of any anisotropic eddy-viscosity effects ren- 
ders it incapable of predicting any strong anisotropy of the turbulence field that might exist 
in the building array. Four different methods for diagnosis of the drag coefficient Co for 
the aligned cube array, required for the volumetric drag force representation of the cubes, 
are investigated here. 
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Significance and Future Plans: A knowledge of the structure of the mean flow and 
turbulence describing the complex flow patterns within and over clusters of buildings is 
essential for improving urban dispersion models. Unfortunately, the computational demands 
of computational fluid dynamics (CFD) where all buildings are resolved explicitly in the 
sense that boundary conditions are imposed at all surfaces (e.g., walls, roofs) are so 
prohibitive as to preclude their use for emergency response situations which require the ability 
to generate an urban flow and dispersion prediction in a time frame that will permit protective 
actions to be taken. In view of this, we have demonstrated in this report how to construct 
models for the statistics of the mean flow and turbulence in an urban canopy that are obtained 
by averaging horizontally the mean wind and turbulence statistics over an area that is larger 
than the spacings between the individual roughness elements comprising the urban canopy, 
but less than the length scales over which the roughness element density changes. The 
development of spatially-averaged Reynolds-averaged Navier-Stokes models permits an 
efficient prediction of urban flows required for emergency response situations. The utility of 
the simplified urban flow simulation models investigated here for provision of the disturbed 
wind field statistics required by a physically-based dispersion model needs further 
investigation. 

Yee, E. and Lien, F.S. (2004). A Distributed Drag Force Approach for the Numerical 
Simulation of Urban Flows. (DRDC Suffield TR 2004-169). Defence R&D Canada - Suffield. 
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Sommaire 

Introduction : On prevoit que les Forces canadiennes (FC), auront, dans un avenir assez 
rapproche, ä combattre ä l'interieur de zones urbaines ou ä proteger ces dernieres, durant des 
operations de combat, de maintien de la paix ou antiterroristes. Une prise de conscience 
accrue et l'importance que le monde entier et ses gouvernements accordent au maintien de 
moyens de defense appropries contre les agents de guerre chimiques et biologiques (CB) dans 
les milieux urbains (construits), ä la prevision des blesses et la degradation de la performance 
humaine resultant de telles emissions ainsi qu'ä la mise au point de procedures 
ope>ationnelles et de reglements de contröle pour attenuer et surveiller le sort des agents CB 
dans les zones urbaines comprenant des hautes densites de population, exigeront des 
modelisations matbimatiques des ecoulements eoliens urbains et de leur dispersion. A cet 
ögard, il faut noter que la prevision des ecoulements dans un milieu urbain est en principe pr£- 
requise ou co-requise avec la prevision de la dispersion du contaminant (par ex. : agent CB), 
dans un paysage urbain. 

Resultats : Un modele modifie k-e a ete propose pour simuler la vitesse et la turbulence 
moyennes du vent pour des ecoulements d'air de stratification neutre, ä travers et par-dessus 
une matrice de bätiments. A l'interieur de la matrice, des groupes de bätiments ont ete agreges 
et traites comme une barriere poreuse. Ce modele est base sur le calcul des moyennes en 
temps et en espace de l'equation Navier-Stokes, dans lequel les effets de l'interaction entre les 
obstacles et Patmosphere sont inclus au moyen de 1'introduction d'un accumulateur des 
impulsions volumetriques (representant la trainee sur les bätiments non nSsolus dans la 
matrice). De plus, la fermeture des equations Navier-Stokes, dont les moyennes en temps et 
en espace ont ete" calculees, exigent deux equations de prevision supplementaires, ä savoir, 
une Equation pour l'energie cinetique sous-filtre K dont les moyennes ont ete calculees et une 
autre equation pour le taux de dissipation s, de K . L'equation de transport pour K peut etre 
derivee ä partir des premiers principes et peut inclure explicitement des sources et des puits 
additionnels provenant du calcul des moyennes en temps du produit des fluctuations des 
vitesses moyennes en espace et des fluctuations de la force distribute de trainee. Ce dernier 
produit aux moyennes calculees peut etre evalue systematiquement ä n'importe quel niveau 
d'exactitude en utilisant une expansion de la serie de Taylor et, ä cet effet, une approximation 
d'ordre supeneur est derivee pour representer ce terme de la source ou de piegeage dans 
liquation de transport pour K qui correspond au travail physiquement accompli contre la 
pression (forme) et la trainee visqueuse, ä l'interieur de la matrice de bätiments. L'equation du 
taux de dissipation (e-) est obtenue simplement comme un analogue de dimension constante 
de l'equation K. 

Le rendement du modele propose et de quelques versions simplifies qui en sont derivees, 
sont compares entre la moyenne des vitesses instantanees, dont les moyennes en espace ont 
et6 calculees et des tensions de Reynold variees dont les moyennes en espace ont ete 
calculees, diagnostiquees ä partir de simulations ä haute resolution de la dynamique 
numerique des fluides de Pecoulement ä l'interieur et par-dessus la matrice de cubes ä angles 
vifs alignes d'une masse surfacique de 0,25. On a trouve que les predictions de modeles pour 
la vitesse et la turbulence moyennes du vent dans la matrice des bätiments ne sont pas 
sensibles aux differents traitements des termes de la source et de puits dans les equations K - 
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et e-, ce qui implique que les approximations superieures des termes de sources /de puits 
n'offrent aucun avantage en ce qui concerne la prediction. II est possible d'expliquer ceci par 
la relation constitutive de la theorie de Boussinesq, ä l'interieur du contexte de moderation 
k-E, dont l'omission implicite des effets anisotropiques de viscosite turbulente le rende 
incapable de predire aucune anisotropie forte du champ de la turbulence qui pourrait exister 
dans la matrice des bätiments. On etudie ici quatre methodes differentes de diagnostic du 
coefficient CD de la trainee pour la matrice de cubes alignes qui est requise pour reprösenter la 

force de la trainee des cubes. 

La portee des resultats et les plans futurs : II est essentiel de connaitre la structure de 
l'ecoulement moyen et de la turbulence moyenne qui ddcrit les modeles complexes 
d'^coulement ä l'interieur et par-dessus des röseaux de bätiments et qui vise ä ameiiorer les 
modeles urbains de dispersion. Malheureusement, tous les bätiments &ant r£solus 
explicitement avec des conditions de limites imposees sur toutes les surfaces (par ex.: murs, 
toits), les exigences en calculs de la dynamique numerique des fluides rendent impossible 
1'utilisation de cette methode en cas d'une intervention d'urgence ; une situation 
d'intervention d'urgence exige de gönörer une prediction des ecoulements et de la dispersion 
en milieu urbain dans un delai d'exöcution assez bref pour permettre la prise des mesures de 
protection. Dans cette optique, nous avons d6montre dans ce rapport, comment construire des 
modeles de statistiques concernant l'ecoulement moyen et les turbulences moyennes dans une 
couverture urbaine. Ces modeles sont obtenus en calculant la moyenne horizontale des 
statistiques de l'ecoulement moyen et des turbulences moyennes du vent, sur un territoire plus 
large que l'espacement entre les Clements individuels de rugosite" comprenant la couverture 
urbaine mais moins large que les öchelles de longueur couvrant un territoire sur lequel change 
la densite" de l'e^ment de rugosite\ La mise au point des modeles Reynold et Navier-Stokes, 
dont les moyennes en espace ont £te calculees, pennet une prediction efficace des 
<§coulements urbains pour des situations d'intervention d'urgence. I/utilite" des modeles 
simplifies de simulation de l'ecoulement urbain ayant 6te etudiee ici pour les statistiques de 
champs de vent perturbe requis par le modele de dispersion, d'apres des criteres physiques, 
exige d'etre etudiee plus profondöment. 

Yee, E. and Lien, F.S. (2004). A Distributed Drag Force Approach for the Numerical Simulation 
of Urban Flows. (DRDC Suffield TR 2004-169). R&D pour la defense Canada - Suffield. 
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Introduction 

The turbulent flow within and over urban areas covered with agglomerations of discrete 
buildings, often with irregular geometry and spacing, is generally very complex and pos- 
sesses a fully three-dimensional structure. Although the application of computational fluid 
dynamics (CFD) to the prediction of the mean flow and turbulence near and around a single 
building or within and over a regular array (or, canopy) of buildings is progressing ([1], [2], 
[3], [4]), this method tends to require extensive computational resources. Nevertheless, CFD 
simulations which involve the solution of the conservation equations for mass, momentum, 
and energy allow the prognosis of a number of velocity statistics (e.g., mean velocity, nor- 
mal stresses, shear stresses, etc.) in an urban canopy. A knowledge of the structure of the 
mean flow and turbulence describing the complex flow patterns within and over clusters of 
buildings is also essential for improving urban dispersion models. 

Unfortunately, the computational demands of CFD where all buildings are resolved expli- 
citly in the sense that boundary conditions are imposed at all surfaces (e.g., walls, roofs) 
are so prohibitive as to preclude their use for emergency response situations which require 
the ability to generate an urban flow and dispersion prediction in a time frame that will 
permit protective actions to be taken. In view of this, we argue that for many practical 
applications it is convenient to consider the prediction of spatial averages of the mean wind 
and turbulence in an urban canopy that is obtained by averaging horizontally the mean 
wind and turbulence statistics over an area that is larger than the spacings between the 
individual roughness elements comprising the urban canopy, but less than the length scale 
over which the roughness element density changes. 

In this report, we focus on the mathematical formulation of a numerical model for the 
prediction of flows within and over a building array based on an aggregation of groups of 
buildings in the array into a number of 'drag units', with the ensemble of units being treated 
as a continuous porous medium. This approach will obviate the need to impose boundary 
conditions along the surfaces of all buildings (and other obstacles) in the array. Wilson 
and Yee [5] applied something like this approach to simulate the mean wind and turbulence 
energy fields in a single unit cell of the wind tunnel "Tombstone Canopy" [6], a regular 
diamond staggered array of bluff (impermeable) aluminum plates, with a disappointing 
outcome (subsequent work showed that invoking a Reynolds stress closure did not help). We 
now know this may owe to the existence of (previously unsuspected) large eddies generated 
by the strong shear layer near the top of the canopy, eddies that span more than one unit 
cell in the streamwise direction, and imply that imposition of an artificial condition of 
periodicity at the boundaries of a single cell amounts to solving a different flow problem. 
These large-scale (coherent) eddy structures generated at or near the canopy top have been 
observed using highly resolved, two-dimensional laser-induced fluorescence measurements of 
the fine structure of the fully space- and time-varying conserved scalar field resulting from a 
point-source release of a tracer within the "Tombstone Reloaded Canopy" in a water channel 
simulation [7]. Belcher et al. [8] applied a similar approach to investigate the adjustment of 
the mean velocity to a canopy of roughness elements using a linearized flow model (obtained 
by determining analytically small perturbations to the undisturbed upstream logarithmic 
mean velocity profile induced by the drag due to an obstacle array). Hookham et al. [9] 
have used a drag force parameterization to represent the effects of buildings on the flow in 
the development of their Urban Windfield Module. 

DRDC Suffield TR 2004-169 1 



There is precedent for treating drag on unresolved buildings in an urban canopy by means 
of a distributed momentum sink for the representation of the effects on the mean flow and 
turbulence arising from the form and viscous drag on canopy elements. As motivation, we 
recall that a similar approach has been applied over the past 50 years to the modelling of 
flows in plant canopies and about porous windbreaks. Although a sink or drag term has 
been added in an ad hoc fashion to the free-air mean momentum equation to model the 
canopy mean wind profile over a number of years ([10], [11], [12]), it was not until 1977 
that Wilson and Shaw [13] showed how to apply a rigorous spatial-averaging procedure to 
obtain the equations for a spatially-continuous area-averaged mean wind and turbulence 
field. In this seminal work, Wilson and Shaw [13] demonstrated how additional source and 
sink terms representing the flow interaction with the canopy elements emerge naturally by 
application of a particular spatial averaging procedure to the Reynolds-averaged Navier- 
Stokes equations that obtain at every point in the canopy airspace. This procedure was 
further developed by Raupach and Shaw [14] for the case of a horizontal plane averaging 
operation. In particular, Raupach and Shaw [14] discuss two different options for averaging 
over a horizontal plane; namely, horizontally averaging the equations of motion at a single 
time instant over a plane extensive enough "to eliminate variations due to canopy structure 
and the largest length scales of the turbulent flow" (scheme I) and conventional time aver- 
aging of the equations of motion followed by horizontal averaging over a plane large enough 
"to eliminate variations in the canopy structure" (scheme II). Scheme I has rather limited 
applicability since it cannot be applied to horizontally inhomogeneous canopies. 

Finnigan [15] and Raupach et al. [6] investigated the volume-averaging method. Finnigan 
[15] considered details such as plant motion (e.g., coherently waving plant canopies) which 
gives rise to a 'waving production' term in the transport equations for turbulence quantities. 
We note that plant motion is not a factor directly pertinent to the present work which 
focusses on urban canopy flows, but these concepts may have a bearing on the case of 
moving obstacles (e.g., vehicles) within the urban canopy. Following ideas of Hanjalic et al. 
[16] and parallelling Shaw and Seginer [17], Wilson [18] developed an empirical two-band 
model for the turbulence kinetic energy (TKE) which represented the large- and fine-scale 
components of the turbulence and their dynamics [the multiple time-scale approach has 
seen much subsequent use [19], but parameterizing the exchange of kinetic energy between 
the spectral bands is a pre-eminent difficulty of the approach]. Here, the turbulence kinetic 
energy was separated into two wave-bands, corresponding to shear kinetic energy (SKE, 
low-frequency band) and wake kinetic energy (WKE, high-frequency band), with separate 
equations developed to represent their dynamics. Wilson [20], Green [21], Wang and Takle 
[22], Wang and Takle [23], Liu et al. [24], Ayotte et al. [25], Sanz [26], and Wilson and Yee 
[27] investigated various modifications of the k-e model or the Reynolds stress transport 
model to account for interaction of the air with canopy elements. 

This is the final report of two describing the numerical modelling of the developing flow 
within and over a 3-D building array. In the first report (henceforth I) [4], we used the 
Reynolds-averaged Navier-Stokes (RANS) equations in conjunction with a two-equation 
turbulence model (i.e., k-e model) to predict the complex three-dimensional disturbed flow 
within and over a 3-D building array under neutral stability conditions. The simulations 
of the mean flow field and turbulence kinetic energy were validated with data obtained 
from a comprehensive wind tunnel experiment conducted by Brown et al. [28]. Here, 
it was demonstrated that the mean flow and turbulence kinetic energy from the numerical 
and physical simulations exhibited striking resemblences. In addition, the importance of the 
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kinematic 'dispersive stresses' relative to the spatially-averaged kinematic Reynolds stresses 
for developing flow within and over an urban-like roughness array has been quantified using 
the high-resolution CFD results obtained with the high-Reynolds-number k-e model. 

In this report, we focus on the formulation of a numerical model for the prediction of flows 
within and over a building array based on an aggregation of groups of buildings in the 
array into a number of 'drag units', with each unit being treated as a porous barrier. This 
approach will obviate the need to impose boundary conditions along the surfaces of all 
buildings (and other obstacles) in the array. Here, we present details of the mathematical 
framework required to derive the transport equation for the time average of the locally- 
spatially-averaged velocity through a building array (which is treated here as a porous 
medium), and the two additional prognostic equations required to close this equation set. 
These additional equations predict the time-averaged resolved-scale kinetic energy of turbu- 
lence, 7c, and its dissipation rate, e. The closure problem relating to the 'correct' represen- 
tation of the additional source/sink terms in the transport equations for mean momentum, 
turbulence energy, and dissipation rate is investigated in detail. Most of the work reported 
is motivated by conceptual and logical difficulties in the self-consistent treatment of source 
and sink terms in the transport equations for turbulence kinetic energy and its dissipation 
rate. To this end, we attempt to lay the foundations for a systematic mathematical for- 
mulation that could be used to construct the additional source/sink terms in the transport 
equations for 7c and e, in response (and to some extent, contradiction) to the assertions 
made by Wilson and Mooney [29] that it is "impossible to know the 'correct' influence of 
the unresolved processes at the fence on TKE and its dissipation rate" and by Wilson et al. 
[30] that uk-e closures give predictions that are sensitive to details of ambiguous choices". 
The problem of the diagnosis of the drag coefficient CD required in the parameterization 
of the distributed drag is addressed. We show detailed comparisons of predictions obtained 
from the model with spatial averages of the mean velocity field and second-order velocity 
statistics obtained from a high-resolution CFD simulation of flow within and over a 3-D 
building array. 

Model formulation ___ 

Spatial and time averaging operations 

Before we begin, we present a short note on the notation that will be used. The following 
derivations will invariably use the flexibility of the Cartesian tensor notation, with Roman 
indices such as i, j, or k taking values of 1, 2, or 3. We shall also employ the Einstein 
summation convention in which repeated indices are summed. For any flow variable (f>, 
{4>) will denote the spatial (volume) average, (j) the time average, <f>' the departure of $ 
from its time-averaged value, and (f>" the departure of (j) from its spatially-averaged value. 
In addition, Ui is the total velocity in the Zj-direction, with i = 1, 2, or 3 representing 
the streamwise x, spanwise y, or vertical z direction. Finally, x = (x,y,z), {u\,v,2,uz) = 
(u, v,w), and t denotes time. 

The derivation of a model for the spatially-averaged time-mean flow can start either from 
applying the spatial averaging operation to the time-averaged Navier-Stokes (NS) equation 
((NS)), or the time averaging operation to the spatially-averaged Navier-Stokes equation 
((NS)).   In formulating such equations, we must choose a suitable decomposition of a 
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flow property into its rapidly and slowly varying components and determine a strategy for 
applying the corresponding averaging operation. First, consider spatial averaging in some 
multiply connected space. In a "slow + fast" decomposition of a flow property <f> based on 
spatial filtering, scales are separated by applying a low-pass scale filter to give a filtered 
quantity ((f)) defined by 

(4>)(x) = f   G(x - y)<f>(y) dy = G*<i>. 
J&.s. 

(1) 

The integral in Equation (1) is assumed to be over all space (a.s.). Here, G(x - y), the 
convolution filter kernel, is a localized function (i.e., G -»• 0 as ||x - y|| -► oo, where || • || 
denotes the Euclidean norm) with width A which is related to some cutoff scale in space, 
and * is used to denote the convolution operation. In general, the filter width can depend 
on x, which we will explicitly indicate using the notation G(x - y|A(x)). 

If we assume that G is a symmetric function of x - y, and differentiate Equation (1) with 
respect to xu we get the following relationship between the spatial average of the spatial 
derivative and the spatial derivative of the spatial average of a quantity <j) (on application 
of the Gauss divergence theorem): 

d<f> \     d(4>) _ 
dxi /      dxi 

'      _d_ 
' dxi 4> 

dA 
dxi 

+ /*G(x-y|A(x))</»(y)nid5, (2) 

where S denotes the sum of all obstacle surfaces contained in the multiply connected region 
(extending over all space), n, is the unit outward normal in the i-th direction on the surface 
S (positive when directed into the obstacle surface), and [f,g] = fg-gf denotes the 
commutator bracket of two operators / and g. Equation (2) will be referred to as the 
generalized spatial averaging theorem. A special case of this theorem (known as the spatial 
averaging theorem) has been derived by Raupach and Shaw [14] and Howes and Whitaker 

[31]. 

The spatial filtering operation does not commute with spatial differentiation. The non- 
commutation of these two operations results from two contributions. The first contribution 
is encapsulated in the first term on the right-hand-side of Equation (2) which arises from the 
spatial variation in filter cutoff length. The second contribution, summarized in the second 
term on the right-hand-side of Equation (2), is due to the presence of obstacle surfaces in the 
multiply connected flow domain. Interestingly, if we apply the spatial-averaging operator to 
the continuity equation, the spatial variation in the filter width implies that (u{) is no longer 
solenoidal. More specifically, although the velocity across the air/solid boundaries vanishes 
owing to the no-slip and impermeability boundary conditions here, the spatial variation of 
the filter width implies an extra source/sink term in the filtered continuity equation [which 
is a direct consequence of Equation (2)]: 

d(uj) 
dxi OXi 

8G       \ dA ,„v 
u*={dÄ*Ui)dx-- () 
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To ensure that the spatially-averaged velocity field is solenoidal, we consider a special con- 
volution kernel whose filter cutoff length does not depend on x. To this purpose, consider 
the box or top-hat filter defined as 

U(X    yj ~\0,        otherwise. K} 

Here, V = A^A^Az is the constant volume over which we average to obtain continuous 
variables. With the constant width filter kernel of Equation (4), the spatial average of a 
flow property (j> of Equation (1) becomes simply 

<0)(x,i) = i| <f>dV = ± j 4>(x + T,t)dx. (5) 

Note that in Equation (5), the averaging volume includes both fluid and solid parts (obsta- 
cles). Applying the volume-averaging operator of Equation (5) to the continuity equation 
results in a spatially-averaged velocity field (u*) that is solenoidal. 

We will use the spatial-averaging operation displayed in Equation (5), where the average 
is taken over both the fluid and solid phases in V (averaging volume), and the normalizing 
factor is the total volume V. For two-phase systems, two other definitions for averaging have 
been proposed (e.g., Miguel et al.[32]). In a two-phase system, the total averaging volume 
V is made up of the volume of the fluid phase Vf and the solid phase Vs, so V = Vf + Vs. 
The superficial (external) phase average of </> is defined as 

and the intrinsic (internal) phase average of <f> is defined as 

(<f>h = £■ f   4>dV. (7) 
Vf JVf 

The intrinsic phase average is an average of a flow property over the fluid phase (i.e., the 
averaging volume Vf excludes the solid phase, with the normalizing factor being Vf). On 
the other hand, the external phase average is a weighted average of the fluid property over 
the fluid phase (i.e., the total volume V is used as the normalizing factor, but the averaging 
excludes the solid phase). 

The spatial (or, volume) average defined in Equation (5) seems natural in the present 
context, and leads to the simplest forms for the volume-averaged transport equations on 
application of the volume-averaging operator to the continuity and the Reynolds equation 
for mean momentum at a single point. Although V is a constant that is independent of the 
spatial coordinates, Vf which represents the volume of the fluid phase contained within V 
need not be (e.g., for an inhomogeneous canopy, Vf and Vs will be a function of the spatial 
coordinates). Because Vf depends on x in Equation (7) (i.e., the filter width depends 
on x), the use of the intrinsic phase average will result in a filtered velocity that is not 
solenoidal [cf. Equation (3)]. Even so, transport equations for the intrinsic phase-averaged 
velocity {UJ}{ can be derived, provided that the fluid-phase volume V/(x) is differentiable 
(or, equivalently, that the porosity £ = Vf/V is a differentiable function of x) although this 
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will result in a number of 'extra' source/sink terms in these equations arising solely from 
the dependence of Vf on the spatial coordinates. The external phase average does not seem 
natural in the present context because {(<f>)e)e ^ (^)e1 (or, equivalent^, (</>'e')e + 0 where 

In analogy with the spatial (or, volume) average defined in Equation (5), the time average 
of <j), which we denote using an overbar, will be defined as 

1    fto+T 

0(x) - ^ / #x, t) dt,        Tt < T < T2. (8) 
T Jto 

In view of Equations (5) and (8), time and spatial averaging commute so (<f>) = $). In 
Equation (5), the horizontal averaging scales Ax, Ay need to be large compared to the 
separation between individual roughness elements, but much less than the characteristic 
length scales over which the density of the roughness elements changes; but to ensure a 
sufficient vertical resolution of the flow property gradients, Az < Ax,Ay making V a 
thin, horizontal slab. In Equation (8), the averaging time T is implicitly assumed to be 
sufficiently long to ensure that many cycles of the rapid turbulent fluctuations in a flow 
property are captured, but sufficiently short so that the external large-scale variations in 
the flow property are approximately constant. Hence, in Equation (8), Ti and T2 denote 
the time scales characteristic of the rapid and slow variations in the flow property <j>, with 
the implicit assumption that Tx and T2 differ by several orders of magnitude. 

In general, <j> can be decomposed in the following two ways: 

4> = 4 + 4>',      W = o. (9) 

or ..„. 
*=<*> + *".        ^"> = 0- (10) 

Although (NS) = (NS)" owing to the commutation of time and spatial averaging operations, 
space-time filtering and time-space filtering of the Navier-Stokes equation lead to two dif- 
ferent decompositions for the turbulent stress tensor, a quantity that needs to be modelled 
(viz., the turbulence closure problem). The subtle differences in these two decompositions 
for the turbulent stress tensor (arising from either a space-time or time-space filtering of the 
nonlinear convective term in the Navier-Stokes equation) will be elucidated in the following 

subsections. 

Spatial average of the time-averaged NS equation 

The spatial average of the time-averaged NS equation (or spatial average of the RANS 
equation) has been described in detail by Raupach and Shaw [14], Ayotte et al. [25], and 
others. Consequently, only some final results are summarized here for later reference. The 
spatially-averaged RANS equation for the prediction of the spatially-averaged time-mean 

velocity (Hi) is 

»il^M + A^ + Ä, (ii) 
dxj oxi     dxj 

Note that after spatial averaging, a flow property <j> is a continuous function of the coordinates in a multiply 

connected space. Hence, even though <j) may vanish identically in the solid phase within V, its spatially-averaged 

value (<p)e is continuous and nonzero in V, so ((4>)e)e ^ \4>)e- 
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with 

r« = -W>-(«> + ^. (12) -,/     v-.-,/-      dx. 

and 

f-H^-H^- <13) 

viscousdrag formdrag 

Here, p is the kinematic mean pressure, fc is the total mean drag force per unit mass of 
air in the averaging volume composed of the sum of a form (pressure) drag and a viscous 
drag, and Ty- is the spatially-averaged kinematic total stress tensor. In Equation (13), v 
is the kinematic viscosity, S is the part of the bounding surface in the averaging volume 
V that coincides with the obstacle surfaces, n, is a unit normal vector in the ith direction 
pointing from V into S (viz., directed from the fluid into the solid surface), and d/dn denotes 
differentiation along n,-. Note that the spatially-averaged kinematic Reynolds stresses (u-^) 
and kinematic dispersive stresses {ü"ü") are a direct consequence of the spatial averaging 
of the time-averaged nonlinear convective term UiUj-, viz., 

(süzj) = (üiHüj) + (Wj) + (*"*")■ (14) 

The last term on the right-hand-side of Equation (14) is the dispersive stress which arises 
from the spatial correlation in the time-mean velocity field varying with position in the 
averaging volume V. Although Ayotte et al. [25] rigorously derive the transport equation 
for {u'iUj), the extra source/sink terms in their proposed model for the spatially-averaged 

second central velocity moments uty, which they denote as dy (contribution to the total 
dissipation arising from the canopy interaction processes), were obtained from an approxi- 
mate expression for the work done by the fluctuating turbulence against the fluctuating drag 
force. The latter was derived in the context of the time average of the spatially-averaged 
NS equation. Mixing the spatially-averaged RANS formulation with the time-averaged, 
spatially-averaged NS formulation results in a mathematical inconsistency in the approach 
described by Ayotte et al. [25]. 

In the next subsection, we formulate the equation set for the time-averaged, spatially- 
averaged NS approach. The approach taken here is similar to that proposed by Wang and 
Takle [22] and Getachew et al. [33]. 

Time average of spatially-averaged NS equation 

The spatial average of the nonlinear convective term UiUj in the Navier-Stokes equation can 
be expanded as follows: 

(uiUj) = < {(Ul) + u'l) ((Uj) + u';) ) = (uMuj) + «<)■ (15) 

Using the decomposition for the spatially-averaged nonlinear convective term of Equa- 
tion (15), and applying the spatial averaging theorem in Equation (2) with the filter kernel 
defined in Equation (4), the spatially-averaged NS equation assumes the form 

dxj oxi      oxj 
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where 

r„—<«?«?>+ »^-f. (17) 
and 

f'-vB"s-vL^s- (18) 

Time-averaging Equation (16) gives the time-averaged, spatially-averaged Navier-Stokes 

equation (NS) as 

»l^M + ^ + Ä, (19) 
dxj dxi      dxj 

where         

Tij = -K)K> + ^J = -K)K) - <«> + "-^. (2°) 

and fi here is the same as fa defined in Equation (13). 

From Equations (11), (12), (19) and (20), the following relationship holds: 

fätfj) + {€»ü'j) = (tiJXuJ) + («)• (21) 

Equation (21) is the necessary and sufficient condition for (NS) = (NS). The total stress 
tensors nj, defined in either Equation (12) or Equation (20) are identical (hence, the same 
notation is used for these two quantities), although the individual terms in their sums are 
different. We note that the physical character of the term (w>") is different from the 
conventional dispersive term (ü'-ü"). 

From the turbulence modelling point of view, we will model «>K') in Equation (20) using 
the Boussinesq eddy viscosity (ut) closure as follows: 

Here 7c and ut are defined as 

K^\mK),        * = C^, (23) 

and e is defined as   

esvm.°wL. (24) 
dxk   dxk 

In Equation (23), Cß is a closure (empirical) constant taken to be 0.09 as in the standard 
Jfc-e model for turbulence closure [34]. We note that K is the sub-filter kinetic energy, so K 

is the time-averaged sub-filter kinetic energy. In addition, since the filter in Equation (5) is 
positive (volume averaging), K is necessarily a positive semi-definite quantity. 
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To make further progress, we assume 

<«X') «<«{>«> (25) 

in the present study (viz., we will simply neglect the term {u"u") for expediency since 
no reference data exists at this time to guide its modelling). Before we derive the model 
equations for K and e, let us examine the momentum sink fa (arising from the pressure and 
viscous forces created by the obstacle elements in V) in the spatially-averaged NS equation 
[cf. Equations (16) and (18)]. The drag force term will be parameterized using the following 
common formulation 

fi = -CDÄ{(uj)(uj))
1/2(ui), (26) 

where CD is the element drag coefficient and Ä is the frontal area density (frontal area of 
obstacles exposed to the wind per unit volume). Equation (26) can be interpreted simply 
as a definition for CD- Although the drag coefficient is almost invariably assumed to be a 
constant for a particular canopy, it will be shown later that CD is a function of position 
(x, z) within the canopy. 

Following from this parameterization, fi (time-averaged momentum sink) in Equation (13) 
is required to be modelled (approximated) as 

»1/2 /i = -CD^((tii)(«i))
1/'K). (27) 

Substituting (UJ) = (üj) + (u'{) into Equation (26) and using the binomial theorem to 
approximate the square root term (see also Getachew et al. [33]), an approximate form for 
fi that is appropriate for time averaging can be derived as 

U « -CDAQ Uui) +  + (Ui) 

+ Q2 + ^ ) . W 

1 /9 
where Q = ((üj)(üj))      is the magnitude of the spatially-averaged, time-mean wind speed. 

Time averaging of fi in Equation (28) gives the following expression (approximation) for 
the time-averaged form and viscous drag force vector exerted on a unit mass of air in the 
averaging volume: 

/, = -CDA (Q(üi) + {^WW) + ^) > (29) 

which, in combination with Equation (22), yields 

fi = -CDA 
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With these closure assumptions, the final form of the modelled time-averaged, spatially- 
averaged NS equation [obtained by substituting Equations (22). (25) and (26) into Equa- 
tions (19) and (20)] becomes 

d{uj)(uj) 
dxj dxi      dxj 

{v + Vt){-dx7 + -dx7 
OtjK, 

CDA Q + f£)<*> 
(d{ui 

dxi )   Q \ 
(31) 

Derivation of transport equations for « and e 

The budget equations for K and e, which have been defined explicitly in Equations (23) and 
(24), need to be derived. To this purpose, let us define // = U - fi as the fluctuating drag 
force. Prom Equations (28) and (29), we can derive 

(32) 

The transport equation for the spatially-averaged fluctuating velocity «), obtained by 
subtracting the evolution equation for the time-averaged spatially-averaged velocity [Equa- 
tion (19)] from the spatially-averaged Navier-Stokes equation [Equation (16)], can be written 
in symbolic form as follows: 

EML -...+ f. (33) 
Dt    ~      +A' 

where D/Dt is the material derivative based on the spatially-averaged velocity («*). The 
time average of the linear combination (u^D^/Dt + (u^D^/Dt gives the following 

transport equation for (u;)(Uj): 

n(u') Din',)      £>«)«) (34) 

where D/Dt is the material derivative based on the spatially-averaged, time-mean velocity 
(tZJ). Furthermore, Fy> representing the interaction between the fluctuating drag force and 
spatially-averaged velocity fluctuations, has the explicit form 

Fa = (u'j)/' + <u{)/j 

= -CDÄ 2Q{u'i){u'j) + ^((üi)(ük)(u'j)(u'k) + (ö,)(öfc)«)K)) 

+ 

+ ̂ ((^)(^.)K)K) + (^)K)K)«)) (35) 
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One-half the trace of Fij yields 

F = -Fa = K)fl 

= -CDÄ 2Q« + ^((öi>(öfc> («;>«)) 

^(K)K)K)K>) IQ 
(36) 

The triple correlation term (u'J (uß (u'k) in Equation (36) can be modelled, following Daly 
and Harlow [35], as 

<«{><«{><*;> = 2c.7 

&K 
MWiiQ^ + WWi) 

a«)«) 
dxi 

(37) 

where the closure constant Cs ~ 0.3 is used in the present study. This is a gradient 
transport model for the third moments of the spatially-averaged fluctuating velocity and 
involves a tensor eddy viscosity. In Equations (36) and (37), the double correlation (uj)(t^.) 
was modelled previously using the constitutive relationship in Equation (22). 

The transport equation for the time-averaged, sub-filter kinetic energy 7c is obtained by mul- 
tiplying Equation (33) by (u'j) and time averaging the result. This procedure will give rise 
to the F term exhibited in Equation (36). This term represents the interaction of the flow 
with the obstacle elements and corresponds explicitly to the work done by the turbulence 
against the fluctuating drag force. The term F can be interpreted as an additional physi- 
cal mechanism for the production/dissipation of 7c associated with work against form and 
viscous drag on the obstacle elements. Prom this perspective, the exact transport equation 
for 7c is   

<s^=-i-«»J-«'»">+(p+F)-£- (38) 

where F = («•)/■; the flux Tj is 

&K 

and, 

T^^u'^W + ^W)-»—; 

d{ui) 
P = -«)(<> ox. 

(39) 

(40) 

is the production term (which is generally positive, and hence a 'source' in the 7c equation). 
In addition to F, the exact transport equation for 7c embodies an extra term represented 
by the second term on the right-hand-side of Equation (38). This term is the energy 
redistribution due to the interaction of the spatially-averaged velocity fluctuations with the 
gradient of the sub-filter stresses {u"u'!). 

The modelled transport equation for 7c is then obtained as follows. Firstly, the additional 
energy redistribution term identified above is assumed to be negligible, and will be ignored 
henceforth. Secondly, the energy flux Tj is modelled with a gradient diffusion hypothesis 

T, - -Ü " (41, 
Ok OXj 
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where the 'turbulent Prandtl number' for 7c is assumed to be ak = 1. Thirdly, the additional 
physical effect on 7c due to viscous and form drag on the obstacle elements embodied in F = 
Ijifirfl will be modelled using Equations (36) and (37). With these closure approximations, 
the model transport equation for 7c assumes the form 

^H = Af^+(P + F)_ei (42) 
dxj        dxj \cTk dxj J 

where the explicit form for F is exhibited in Equations (36) and (37). 

The exact transport equation for e can be derived rigorously, but it is not a useful starting 
point for a model equation. Consequently, rather than being based on the exact equation, 
the model equation for e here is essentially a dimensionally consistent analog to the Ac- 
equation. In this sense, the model equation for e is best viewed as being entirely empirical. 
To this purpose, we note that the time scale r = 7c/e will make the production and dissipa- 
tion terms in the Tc-equation dimensionally consistent. Hence, the dimensionally consistent 
analog to Equation (42) becomes 

ö&>£ =   9   (l* * ) +l(Cel(P + F) -C«*), (43) 
dxj        dxj \at axjj     K

K 

where a, = 1.3, Ctl = 1.44 and Ct2 = 1-92 are empirical (closure) constants. The e-equation 
here essentially retains the same form as the usual model equation for e commonly utilized 
in the standard k-e model [34]. The only difference here is that the drag force effect on 
the turbulence (embodied in the term F) has been included with the production term P in 
Equation (43). 

In Equation (43), we have grouped F with P in the e-equation. In other words, we sensitize 
the e-equation to the effects of form and viscous drag of the obstacle elements by replacing 
P with P + F in the 'production of dissipation' term (usually, the effect of the obstacle 
elements is to enhance the dissipation in the canopy airspace). This treatment is similar to 
the rationale used by Ince and Launder [36] for dealing with buoyancy effects on turbulence 
in buoyancy-driven flows. In these types of flows, the gravitational production term G = 
-ßg^F (gi is the gravitational acceleration vector, ß is the thermal expansion coefficient, 
and V is the virtual temperature fluctuation) is included with P in the transport equation 
for the viscous dissipation rate. In this regard, our proposed approach for treating F in the 
e-equation differs from that suggested by Getachew et al. [33]. 

Wake production 

The closure of the spatially-averaged RANS equation [cf. Equations (11) and (12)] requires a 
transport equation for (k) = |<uju<) (i.e., the spatially-averaged turbulence kinetic energy), 
whereas that for the time-averaged spatially-averaged NS equation [cf. Equations (19) and 
(20)] requires a transport equation for 7c = £«)(u{) (i.e., the time-averaged sub-filter 
kinetic energy). The model transport equation for 7c in Equation (42) included a source/sink 
term F whose form can be systematically derived in terms of the drag force term that 
appears in the mean momentum equation [cf. Equation (36)]. 
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The budget equation for (k) can be derived by applying the spatial averaging operator to 
the standard transport equation for k to give 

d(k) ,-rT\dui       d 1 
i(u>X) + (^') + ^«»,i) 

d*(k) /       „du" , .... + ^-£-{vf^d^)- (44) 

ii 

In Equation (44), e = i/(-^L-£L) is the isotropic turbulent dissipation rate for (k). 

The transport equation for {k) contains two additional terms (designated I and II) that 
need to be approximated. Term I corresponds to the dispersive transport of (k) [analogous 
to the dispersive flux of momentum in Equations (11) and (12)]. Term II can be identified 
as a wake production term (see Raupach and Shaw [14]) which accounts for the conversion 
of mean kinetic energy to turbulent energy- in the obstacle wakes by working of the mean 
flow against the drag. This term is analogous to the F term that appears in the transport 
equation for 7c, but unlike F whose form can be systematically derived from the form 
and viscous drag force term that appears in the mean momentum equation, the link (if 
any) between the wake production term in Equation (44) and the drag force term in the 
mean momentum equation is less obvious. For example, Raupach and Shaw [14] showed 
that provided (1) the dispersive stress (ü"ü") and the dispersive transport of (A;) are both 
negligible and (2) the mean kinetic energy is not directly dissipated to heat in the canopy, 
the wake production term can be approximated as follows: 

-<(<^)"U> = -{üt)fi=2CDÄQ (£<««><«,>), (45) 

K 

where K represents the mean kinetic energy (kinetic energy of the spatially-averaged time- 
mean flow). Note that use of Equation (45) as a model for the wake production term strictly 
provides a source term in the transport equation for (k). 

However, Green [21] and Liu et al. [24] found that it was important to include also a sink 
term in the budget equation for (k) and. to this purpose, modelled the wake production 
term in the budget equation for (k) in an ad hoc manner as 

-<(uj^)'Ä) = 2CDÄQ QteKü,)) -iCDÄQ Q^X>), (46) 
"J 

K (k) 

which includes a gain to (k) from conversion of the mean kinetic energy K to turbulence 
energy at the larger scales (source term) and a loss from (k) of the large-scale turbulence en- 
ergy to smaller (wake) scales (sink term). More specifically, Green [21] argued heuristically 
that the sink term in Equation (46) was required to account for the accelerated cascade of 
{k) from large to small scales due to the presence of the roughness elements (arising from 
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the rapid dissipation of fine-scale wake eddies in a plant canopy). Liu et al. [24] noted that 
the ad hoc inclusion of the sink term (second term on the right-hand side) of Equation (46) 
[which was inserted in hindsight] was important, for otherwise they found that their pre- 
dicted (Jt) was "about 100% larger than the experimental measurements when the second 

term was ignored". 

In contrast, the additional source/sink term F that appears in the budget equation for 7c can 
be systematically derived from rate of working of the turbulent velocity fluctuations against 
the fluctuating drag force, and appears naturally in the derivation of the budget equation 
for 7c. Even though the 'turbulence kinetic energy' 7c = |<M{)K> (time-averaged, sub-filter 
kinetic energy) used in our turbulence closure model is different from the usual form of the 
spatially-averaged turbulence kinetic energy (k) = ±K^), they are nevertheless related 

as follows: 1  

<*>-*= \{<$R) - <««» = -2{Kn<)")- w 

Note that the difference between (k) and 7c is proportional to the difference between the 
two forms of dispersive stress that appear in the spatially-averaged RANS equation and 
the time-averaged, spatially-averaged NS equation. However, note that this difference can 
be expressed as the spatial average of time averages of the departures of velocity fluctu- 
ations from their spatial (volume) average. Since this term involves a "perturbation of a 
perturbation", it seems reasonable to assume that 

o«^|<K)//K)">l«max(W'^)- (48) 

With this assumption, (Jfe) and 7c are expected to be almost equal in value (viz., (k) « 7c). 
This, together with Equation (21), also implies that 

(fij'fi^ « <<^>, (49) 

or, in other words, the dispersive stresses are expected to be approximately equal to the 
spatial average of the high-frequency turbulent stresses. Finally, with reference to Equa- 
tion (21), this implies that «)<«;> « K^)- The latter approximation will be used in a 

later section to compare model predictions of (u'Jiu'j) with the diagnosed values of (uty) 
obtained from a high-resolution RANS simulation. 

Interestingly, the 'zeroth-order' term in our expansion of F in Equation (36) rewritten below 

F = IfiM = -2CDÄQ QW^j +H.O.T, 

where H.O.T denotes higher-order correction terms, is analogous to the sink term contribu- 
tion for the wake production term in Equation (46) [except the factor here is 2, rather than 
4]. Note that the higher-order correction terms for F can have either sign implying that they 
are source/sink terms. More importantly, it needs to be emphasized that the leading-order 
term of F is a sink term, and not a source term implying that in the transport equation for 
7c the conversion of MKE to TKE is ipso facto absent. 
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Determination of drag coefficient 

In this section, we will explicitly diagnose a drag coefficient CD using the results for a 
high-resolution CFD simulation of a developing flow over an aligned array of cubes (3-D 
buildings) (described in I). This regular building array consisted of seven rows of cubes 
arranged with a plan area density of 0.25 [28]. To derive a drag coefficient for this array, 
first note from Equations (13) and (29) that the z-component of the drag force fi(i = l = x) 
reduces to 

Ix ~ VI ltdS ~vl ^ld5 = -C°WÄ(2W> <51) 
where we assume implicitly that V in Equation (51) is a thin horizontal slab centered at 
the level z. 

To specialize the analysis to the aligned 3-D building array consisting of the 7 rows of cubes 
arranged normal to the mean wind direction, we consider decomposing this array into seven 
"drag units" as illustrated in Figure 1(a). Each drag unit consists of one row of cubes 
(buildings) and the associated downstream street canyon. To diagnose a drag coefficient 
CD{Z) at level z for each drag unit in the array, we take an averaging volume V as the thin 
horizontal slab shown in Figure 1(b). Now application of Equation (51) to this averaging 
volume gives the following explicit expression for the pressure drag: 

If- 1     [ fH/2 - 
— / pnxdS = —^jp    /       (PU=IO - P\X=XO+H) dy (52) 

The frictional drag, ^ Js ^dS, can be evaluated similarly using the 'wall function' approach 
to estimate the skin friction along the building surfaces [37]. With the computation of the 
pressure and frictional drag forces, the local or sectional drag coefficient CD(Z) can then be 
diagnosed as follows [cf. Equation (51)]: 

CD(z)A =    -f* (53) 
max(d, Q{u){z)) 

where 6 « 0.0025 < 1 is chosen here to avoid a possible singularity problem for the case 
when (ü) K 0. We note that the results to be shown in the next section are insensitive 
to the exact value chosen for 5 in Equation (53). Furthermore, for developing flow over a 
building array, a local equilibrium assumption involving the balance between the obstacle 
drag force and the downward transport of momentum by turbulent stresses cannot be used 
to diagnose the sectional drag coefficient. 

Vertical profiles of CD(z) over the range of heights 0 < z/H < 1 for each drag unit in 
the 3-D building array are shown in Figure 2. For the first drag unit (associated with the 
first row of buildings in the array), CD{Z) increases monotonically with decreasing z/H. 
For drag units in the array interior (drag unit #3 or greater), CD(Z) first increases, then 
decreases, and then increases again with decreasing z/H. In all cases, the highest values of 
CD{Z) were obtained near the ground as z/H —> 0, with CD(Z) decreasing to a small value 
at the top of the canopy, the latter of which implies a significant reduction in the rearward 
pressure deficit near the canopy top. 
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We note that CD is smaller for the drag units in the interior of the building array compared 
to that of the first drag unit which is influenced by the impingement region upwind of the 
array. This is an example of the 'shelter effect' where the mutual interference of the obstacle 
elements leads to a reduction in the value of the drag coefficient measured in situ within 
the array compared to the drag coefficient measured in the free-stream flow (e.g., drag 
coefficient corresponding to drag unit #1). Indeed, the largest value of the sectional drag 
coefficient CD{z) at a given z occurs in drag unit #1 (i.e.. first row of buildings) over much 
of the canopy depth. This first drag unit is responsible primarily for the adverse pressure 
gradient in the impingement zone upwind of the building array that results in a significant 
deceleration of the air flow here. In contrast, the smallest value of the drag coefficient 
CD{z) at each level z/H occurs for drag unit #2 which corresponds to the region in the 
building array (viz., in the immediate leeward zone of the first row of buildings) where the 
shelter effect is most pronounced. More specifically, the maximum mean wind speed and 
turbulence reduction occurs in this immediate leeward 'quiet' zone (corresponding to drag 

unit #2). 

Because such detailed information on the sectional (local) drag coefficient is not usually 
available, it is useful to consider also the application of a bulk drag coefficient. To this 
purpose, we consider three different methods for the evaluation of a bulk drag coefficient, 
CD,buik- These three methods for determination of a bulk drag coefficient are defined as 
follows: 

Method 1: „ 
i  rz      ■ 

<?D,bulk,i = 77  / CD{z)dz, (54) 

where CD,bulk,t (1 < i < 7) is the bulk drag coefficient for each drag unit determined by 
averaging the sectional drag coefficient at height z (CD(z)) over the entire depth of the 
canopy; 

Method 2: 

Cx>,bulk,ave = = }2 Cx>,bulk.i, (55) 
i=l 

is the arithmetic average of CD,buik,i over the drag units comprising the entire 3-D building 
array; and, 

Method 3: 
CD,bulk,l — CD,bulk,i|t=l (^6) 

is the bulk drag coefficient for the first drag unit. This is similar to using a drag coefficient 
diagnosed for the flow over a single (isolated) row of buildings (viz., a free-stream bulk drag 
coefficient). 

The variation of the bulk drag coefficient CD,buik.i (defined using Method 1 above) with 
increasing drag unit i in the array (viz., with increasing fetch through the urban canopy) 
is exhibited in Figure 3(a). Here, we have decomposed the drag coefficient Co.buiM into 
a contribution from the form (pressure) drag CDp,buik.i and the frictional (viscous) drag 
Cx>/,buik,i- Note that the contribution of the frictional (viscous) drag (Ci)/,buik) to the 
bulk drag coefficient is negligible in comparison with the contribution from the pressure 
(form) drag CDp,buik- Generally, the contribution of the skin friction to the bulk drag 
coefficient is less than one percent of the contribution of the form drag. We note that the 
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bulk drag coefficient for drag units in the array interior (viz., for drag unit #3 or greater) 
is between one-half and two-thirds of the bulk drag coefficient for drag unit #1 (viz., drag 
unit associated with the row of buildings forming the upstream boundary of the array) 
implying a 'shelter factor' (ratio of free-stream bulk drag coefficient to the in situ value) 
of between about 1.5 and 2. This is consistent with the reported range of shelter factors 
of between 1 to 4 compiled by Raupach and Thom [38] in their review of canopy flows. 
Finally, the bulk drag parameters CD,buik,ave^ and Cx>,buik,i^l were found to be about 0.7 
and 1.2, respectively [cf. Figure 3(b)] for the 3-D building array considered here. 

Results and discussion 

The results to be presented in this section were obtained with three different versions of the 
k-e model (distinguished by the source/sink terms included in the transport equations for 
k and e) with the major differences between these versions summarized below.2 

Model (Version) 1: Model 1 is in essence the same as the proposed model except that /j in 
Equation (30) is replaced by 

ft = -CDÄQ(üi), (57) 

and F in Equation (36) is set identically to zero. Hence, in this version of the model, no 
additional source or sink terms are included in the transport equations for k and e, and a 
simplified parameterization for the mean drag force vector [viz. Equation (57)] is used. 

Model (Version) 2: Model 2 is Lee and Howell's model [39], in which the parameterization 
for the mean drag force vector /, is that displayed in Equation (57). However, unlike 
Model 1, the leading order term of F in Equation (36) is retained (viz., a sink term of 
the form F « -2CDAQK is incorporated into the transport equation for R). Finally, 
rather than include this leading order approximation of F with the production term P as in 
Equation (42), Lee and Howell's model introduces a sink term of the form eF/R « -2CoAQe 
into the transport equation for e. However, we note that the inclusion of the 'zeroth- 
order' approximation for F here with the production term P in the e-transport equation 
[cf. Equation (42)] did not make a significant difference in the flow predictions (viz., the 
predictions of urban flow using the latter model are indistinguishable from those obtained 
using Lee and Howell's model). 

Model (Version) 3: Model 3 is the current model (described above), consisting of Equa- 
tions (31), (36), (37), (40), (42), and (43). 

The «-isopleths predicted by three different models (summarized above) using the local 
(sectional) drag coefficient CD{z) (cf. Figure 2) are displayed in Figure 4. As the upstream 
flow impinges on the leading edge of the building array, which is modelled here as a 'porous 
layer' of height H extending from the upstream edge of the first drag unit to the downstream 
edge of the last drag unit, the deceleration of the flow within the volume of the canopy 
(z/H < 1) and acceleration (overspeeding) of the flow above about z/H « 4/3 results in a 

Although we use the standard terminology in k-e closure modelling and refer to the transport equation for the 

turbulence energy as the Adequation, this should be interpreted more precisely here to refer actually to the transport 

equation for 7c (viz., the time-averaged, sub-filter kinetic energy). Consequently, in this section, the K-equation 

will be interpreted to be synonymous with the K-equation, so that k and 7c will be used interchangeably in what 

follows. 
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strong shear in the mean flow in the region of the canopy top. An inflection point occurs 
in the mean wind at z/H « 1 where the mean shear d(u)/dz assumes its maximum value. 

This mean shear acts as a source for the generation of k through P ~ (d(ü)/dz) (in the 
Boussinesq eddy-viscosity approximation) at or near the top of the canopy. The presence of 
an inflection point in the mean velocity profile and the strong generation of k in the region 
of the inflection point is characteristic of a plane mixing layer (i.e., a free shear layer that 
forms when two airstreams of different velocities, initially separated, merge downstream 
of the separation and interact) as discussed by Raupach et al. [40] for the case of plant 
canopies. 

A perusal of the results in Figure 4 shows that Model 1 performs significantly differently than 
the other two models. In particular, Model 1 exhibits a much more prominent turbulence 
kinetic energy (TKE) 'plume' than is evident in the other 2 models. This TKE 'plume' 
originates from the upstream rooftop edge of the first building and spreads vertically at a 
constant (approximately or better) rate, achieving a vertical depth of about 5H at roughly 
a downstream distance of 25# from the upstream edge of the building array. The TKE 
'plume' is advected by the fluid flow in the downstream direction, and its rate of spread in the 
vertical direction is governed by turbulence diffusion through the eddy viscosity vt~k2. For 
Model 1, no drag-force-related 'sink' terms are included in the k- and e-equations, resulting 
in an excessive level of k and. hence, vt. This, in turn, increases the spreading rate of the 
TKE 'plume'. In contrast, the turbulence energy levels predicted by Models 2 and 3 (which 
incorporate minimally an additional sink term in the k- and e-equations) are smaller than 
those predicted by Model 1. Furthermore, Model 1 also predicts a much higher level of 
k within the volume of the canopy (particularly in the near wall region 0 < z/H < 0.5) 
than Models 2 or 3. In general, the prediction of turbulence energy provided by Models 
2 and 3 is similar except for the region downstream of the leeward rooftop edge of the 
last building (14 < x/H < 17.5) where Model 3 predicts a slightly higher level of k than 
Model 2. It appears from this observation that k is not very sensitive to the differing 
treatments of sources and sinks in the k- and e-equations, while simulations using the k-e 
closure without additional sources and sinks in the k- and e-equations lead to significantly 
different predictions of the turbulence energy levels. 

Profiles of predicted spatially-averaged time-mean streamwise velocity (Ü) obtained using 
Models 1-3 for the first six drag units are shown in Figure 5. These predictions are compared 
to (ü) obtained by spatially-averaging RANS mean flow solutions over the same volumes 
occupied by the drag units. Our high-resolution RANS simulations of the 3-D building array 
considered here are reported in I. The latter results, which have been spatially-averaged 
here, will be labelled in the figures using the symbol 'o' and will be referred to henceforth 
as 'high-resolution CFD' results. Within the volume of the canopy, the spatially-averaged 
time-mean velocity predicted by Models 2 and 3 (cf. Figure 5) are in excellent agreement 
with the high-resolution CFD results for drag units #3 to #6. However, for the first two 
drag units, (ü) is slightly overpredicted by these two models which appears to be a result 
of the severe underestimation of (u')(u') in the near-wall region z/H < 2/3 (see below). 
Vertical profiles of (ü) obtained from the high-resolution CFD results appear to have reached 
streamwise equilibrium (viz.. the spatially-averaged, time-mean streamwise velocity field is 
fully developed) by the third drag unit, a feature that is reproduced correctly by all three 
models. 
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The corresponding profiles of turbulence quantities {u')(u') (streamwise normal stress) and 
(u')(w') (shear stress) are displayed in Figures 6 and 7, respectively. Consistent with Fig- 
ure 4 in relation to the spreading of the TKE 'plume', the peak values of (u')(u') (i.e., the 
streamwise normal stress component of k) at z/H « 4/3 are overpredicted by all three 
models. This overprediction of (u')(u') is rather significant for Model 1, particularly in 
drag units #2 to #6. An overestimation of (u'){u') (and, by inference of k) gives too high 
values of the eddy viscosity ut ~ k2, yielding an excessive vertical turbulent diffusion of 
mean momentum. This, in turn, results in an underestimation of the magnitude of the 
mean shear at the top of the canopy and an underprediction of (u) in the region above the 
canopy height (i.e., in z/H > 1). 

The vertical spreading of the TKE 'plume' is evident on an examination of the streamwise 
development of {u')(u') in Figure 6. Here, it is seen that (u')(u') approaches its undisturbed 
far upstream value at the level of z « 350 mm (z/H sa 2.3) in drag unit #1, but at the 
greater level of z « 500 mm (z/H « 3.3) in drag unit #6. Interestingly, the peak value of 
(u')(u') also increases monotonically in the streamwise direction, which is markedly different 
from what we normally would expect from the development of a mixing layer (assuming 
that the shear flow near the canopy top has the characteristics of a plane mixing layer). 
For example, in Model 1, the peak value of {u')(u') is « 0.3 m2 s~2 in drag unit #1 and 
« 0.5 m2 s~2 in drag unit #6. However, the high-resolution CFD results show almost no 
tendency of streamwise development in the streamwise normal stress after drag unit #3, 
which is consistent with the streamwise variation of Cxj,buik displayed previously in Figure 3. 
In particular, within the array interior (x/H > 6), it appears that the flow statistics (mean 
flow and turbulence) within the third street canyon should be "typical" of their neighbors, 
implying that in the array interior a periodic boundary condition could have been imposed 
to model the flow within a unit drag cell consisting of a single row of 3-D buildings and the 
associated street canyon. 

The deficiency of not being able to predict a fully-developed state for the turbulence fields 
within the array using a distributed drag force approach might be due to the defects in the F 
term included in the transport equation for k. Although in the present model, higher-order 
corrections to the nonlinear drag force term, similar to those proposed by Getachew et al. 
[33] have been included, their overall effect on the model prediction does not appear to be 
significant. Indeed, the model predictions obtained with the more complex model proposed 
here is not significantly different from the simpler Lee and Howell model [39]. However, the 
effectiveness of the higher-order corrections in our model, particularly the triple correlations 
(Ui)(tii)(t4)) can only probably be realized if the Reynolds stress anisotropy can be correctly 
represented, which is difficult to achieve within the present impoverished k-e modelling 
framework used in conjunction with the Boussinesq linear stress-strain relationship. 

As the major component in P is -{u')(w')d(ü)/dz, we expect the shear stress — (u'){w') to 
be overestimated by the three models in order to be consistent with the overestimation of k 
and (u')(u') observed in Figures 4 and 6. It is seen in Figure 7 that Model 1 predicts a peak 
value in shear stress that is approximately 4-5 times smaller (i.e., more negative) than the 
high-resolution CFD results for drag units #1 to #6. Even for Models 2 and 3, the peak 
values of (u')(w') are still too small (i.e., too negative), although Model 2 performs slightly 
better than Model 3 in the prediction of (u')(w') and (u')(u') (cf. Figure 6). However, it 
should be emphasized here that the true performance of the present model can only be 
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assessed if a higher-order closure model, such as the Reynolds stress transport model of 
Launder et al. [41] that is capable of predicting the anisotropy of the turbulence fields, is 
used. This is an interesting topic for a future investigation. 

The effect of the specification of CD on the predictive performance of a distributed drag 
force model will be investigated. To this purpose, the diagnosed sectional drag coefficient 
(cf. Figure 2) and three bulk drag coefficients (cf. Figure 3) have been used as input to 

Model 3 for the prediction of (S), («')<"')» and («'X™')- The results of this simulation 
are displayed in Figures 8, 9, and 10. It is seen from Figure 8 that the use of a sectional 
drag coefficient CD(z) permitted a more accurate prediction of (S> in drag unit #1 for the 
region z/H < 2/3. This is the result of the correct representation in the increase of the 
drag coefficient with decreasing z/H which is embodied in the local drag coefficient, but 
is missing in the representation provided by the bulk drag coefficients. Nevertheless, the 
predictive performance of the model using only the bulk drag coefficients generally gave 
similar results to those obtained with the sectional drag coefficient for both the mean flow 
and turbulence. 

For drag unit #2, it is observed that the model prediction for (ö) below the canopy height 
obtained using the bulk drag coefficient CD,buik,i is markedly different from the other three 
sets of predictions obtained using CD(z), CD,buiM, and Cb,b„ik,ave. More specifically, (u) 
is too small (i.e., underpredicted) for 2/5 < z/H < 1 compared to the high-resolution CFD 
results. This is because CD,buik,i can be regarded as the drag coefficient for a flow over 
an isolated row of cubical buildings (i.e., a free-stream drag coefficient). The drag of an 
isolated row of buildings is different from its effective drag in situ (viz., the drag of a row 
of buildings within a building array, where the 'shelter effect' becomes important). It was 
shown earlier that the drag for a row of buildings (modelled as a porous barrier here) in 
situ is less than for the same row of buildings in isolation owing to the 'shelter effect'. In 
fact, the current calculations show that the drag coefficient drops considerably after the 
first row of buildings in the array due to the 'shelter effect' and recovers rapidly thereafter, 
reaching approximately its fully-developed value somewhere between the third and fourth 
rows of buildings in the array (cf. Figure 3). 

Overall, good predictions of the mean flow through the canopy, except in drag unit #1, 
can be achieved by the using CD,buik,ave, the latter of which can be considered to be equal 
(approximately or better) to the fully-developed value of CD,buik in the array interior. Since 
CD{z) and CD,buiM are difficult to obtained in practice, we recommend the approach of 
using CD,buik,i (free-stream drag coefficient) for drag unit #1 and CD,buik,ave for all other 
drag units in the array (all of which will 'experience' some form of sheltering from the drag 
unit(s) upstream of it). Both CD,buik,i and CD,buik,ave are simpler to obtain experimentally 
than the sectional drag coefficient CD{Z)- 

Conclusions   

The present k-e model was derived rigorously based on a time-averaging of the spatially- 
averaged NS equation. If we assume that the kinematic dispersive stresses. (u"u"), are 

comparable in magnitude to {u'(u'i) [an explicit demonstration of the validity of this as- 
sumption will require either a Direct Numerical Simulation (DNS) or a Large Eddy Simula- 
tion (LES)], then (MJ)(U^-) can be compared directly with the spatially-averaged kinematic 
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Reynolds stresses, (u^u'j), the latter of which can be estimated explicitly using the high- 
resolution CFD results presented in I (or, equivalently, 7c can be compared directly to (k), 
the latter quantity of which is available directly from a RANS simulation). 

We found that the peak of the kinematic streamwise normal stress, (u')(u'), was overpre- 
dicted by all three models investigated here. However, we note that these models overpredict 
(u')(u') (and, by inference, K) when compared to the high-resolution CFD results, the latter 
of which are assumed implicitly to correspond to the "ground truth". However, this may not 
necessarily be the "correct" comparison since it was shown in I that the RANS simulation 
generally gave an underprediction of the turbulence energy in the building array, implying 
that the spatially-averaged TKE obtained from these high-resolution CFD simulations will 
probably underpredict the true (but unknown) values. Hence, the overprediction of the 
streamwise normal stress by the distributed drag force models may not be as severe as 
apparently indicated here in comparison with the high-resolution CFD results. 

Nevertheless, Model 1 (i.e., model with no additional source/sink terms in the k- and e- 
equations) gave the worst predictive performance of the three models considered. Model 2 
(Lee and HowelPs model) and Model 3 (current proposed model) gave very similar predic- 
tions for the mean streamwise velocity {ü}. In terms of turbulence quantities (viz., {u'){u') 
and (u')(w')), Model 2 gave slightly better results than Model 3, which appears to suggest 
that the contribution of the higher-order correction terms in the present model, displayed 
in the F term of Equation (36), is not important. In other words, the predictions of the 
turbulence quantities do not appear to be sensitive to the precise treatment of the source 
and sink terms in the k- and e-equations. However, it is possible that the insensitivity of 
the results to the inclusion of such higher-order terms in the model is caused by the use of 
the Boussinesq linear stress-strain constitutive relation [i.e., Equation (22)] within the k-e 
modelling framework. Hence, higher-order turbulence closure models, such as the Reynolds 
stress transport model of Launder et al. [41] that is capable of predicting the anisotropy 
in the Reynolds stress field, might be required here in order to take full advantage of the 
higher-order correction terms. 
The profiles of (u) are in general well predicted by the present model in conjunction with 
the use of a sectional drag coefficient CD{Z), or the bulk drag coefficients Co.buik.i and 
Cx>,buik.ave) particularly, below the canopy height (z/H < 1). However, when Cr>,buik.i was 
used, the (ü)-profiles within the canopy were generally underpredicted (at least for the first 
four drag units of the array) due to the neglect of the 'shelter effect' in the canopy interior. 
In consequence, we recommend that in modelling of the developing flow over a building 
array using the distributed drag force approach that C^buik.i (°r, equivalently, the free- 
stream drag coefficient) be assigned to the first drag unit (e.g., first row of buildings in the 
array) and Cx^buik^ve (or> equivalently, an in situ drag coefficient for the fully-developed 
flow in the array interior) be assigned to the remaining drag units. 
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Figure 1. Decomposition of the aligned array of cubes into (a) seven drag units with each 
drag unit consisting of a row of cubes and the associated downstream canyon; (b) thin 
horizontal slab chosen as the averaging volume within each drag unit. 
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Figure 2.   The variation of normalized sectional (local) drag coefficient CD{Z)AH/V 

CD{Z)A for each drag unit comprising the building array. 
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Figure 3. The normalized bulk drag coefficients for various drag units in the build- 
ing array: (a) CDthu\ktiAH/V, CDpMl]ktiAH/V and CDfMiKiAH/V; (b) CD,hn\^iAH/V, 
Cz>,buik,aveAHyV, and CDMi\,tiAH/V. 
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Figure 4. Turbulence kinetic energy (K) isopleths obtained with three different k-e closure 
models used in conjunction with the diagnosed values for the sectional (local) drag coefficient 
CD(z). 
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Figure 5. Profiles of (ü) obtained with three different k-e closure models used in conjunc- 
tion with the diagnosed values for the sectional (local) drag coefficient CD(Z) for drag units 
#1 and #2. Model 1 (solid line); Model 2 (dashed line); Model 3 (dashed-dotted line); 
high-resolution CFD (open circle). 
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Figure 5. (Continued) Profiles of (ü) obtained with three different k-e closure models used 
in conjunction with the diagnosed values for the sectional (local) drag coefficient CD{Z) for 
drag units #3 and #4. Model 1 (solid line); Model 2 (dashed line); Model 3 (dashed-dotted 
line); high-resolution CFD (open circle). 
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Figure 5. (Continued) Profiles of (u) obtained with three different k-e closure models used 
in conjunction with the diagnosed values for the sectional (local) drag coefficient CD (Z) for 
drag units #5 and #6. Model 1 (solid line); Model 2 (dashed line); Model 3 (dashed-dotted 
line); high-resolution CFD (open circle). 
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Figure 6. Profiles of (u')(u') obtained with three different k-e closure models used in 
conjunction with the diagnosed values for the sectional (local) drag coefficient CD{z) for 
drag units #1 and #2. Model 1 (solid line); Model 2 (dashed line); Model 3 (dashed-dotted 
line); high-resolution CFD (open circle). 
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Figure 6. (Continued) Profiles of (u')(u') obtained with three different k-e closure models 
used in conjunction with the diagnosed values for the sectional (local) drag coefficient CD {Z) 

for drag units #3 and #4. Model 1 (solid line); Model 2 (dashed line); Model 3 (dashed- 
dotted line); high-resolution CFD (open circle). 
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Figure 6. (Continued) Profiles of {u')(u') obtained with three different k-e closure models 
used in conjunction with the diagnosed values for the sectional (local) drag coefficient CD{z) 
for drag units #5 and #6. Model 1 (solid line); Model 2 (dashed line); Model 3 (dashed- 
dotted line): high-resolution CFD (open circle). 
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Figure 7. Profiles of (u')(w'} obtained with three different k-e closure models used in 
conjunction with the diagnosed values for the sectional (local) drag coefficient CD(Z) for 
drag units #1 and #2. Model 1 (solid line); Model 2 (dashed line); Model 3 (dashed-dotted 
line); high-resolution CFD (open circle). 
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Figure 7. (Continued) Profiles of (u')(w') obtained with three different k-e closure models 
used in conjunction with the diagnosed values for the sectional (local) drag coefficient CD(z) 
for drag units #3 and #4. Model 1 (solid line); Model 2 (dashed line); Model 3 (dashed- 
dotted line); high-resolution CFD (open circle). 
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Figure 7. (Continued) Profiles of (u')(w') obtained with three different k-e closure models 
used in conjunction with the diagnosed values for the sectional (local) drag coefficient Co (z) 
for drag units #5 and #6. Model 1 (solid line): Model 2 (dashed line); Model 3 (dashed- 
dotted line); high-resolution CFD (open circle). 

DRDC Sufficld TR 2004-169 37 



1    2    3 
<u> (m s"1) 

1000 

900 

800 

700 

600 
? 
E, 500 

400 

300 

200 

100 

0 

Unit #2 

1    2    3 
<u> (m s'1) 

Figure 8. Profiles of (ü) obtained with the proposed distributed drag force model (Model 3) 
used in conjunction with four different methods for specifying the drag coefficient. CD(z) 
(solid line); CD,buik,i (dashed line); CD,buik,ave (dashed-dotted line); CD,buik,i (dashed- 
dotted-dotted line); high-resolution CFD (open circle).   Results are shown for drag units 
#1 and #2. 
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Figure 8. (Continued) Profiles of (ü) obtained with the proposed distributed drag force 
model (Model 3) used in conjunction with four different methods for specifying the drag 
coefficient. CD(Z) (solid line); C£>,buik,i (dashed line); CD,bulk,ave (dashed-dotted line); 
Cr>,buik,i (dashed-dotted-dotted line); high-resolution CFD (open circle). Results are shown 
for drag units #3 and #4. 
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Figure 8. (Continued) Profiles of (ü) obtained with the proposed distributed drag force 
model (Model 3) used in conjunction with four different methods for specifying the drag 
coefficient. CD{z) (solid line); CD,buiM (dashed line); CD,buik,aVe (dashed-dotted line); 
CD.buik.i (dashed-dotted-dotted line); high-resolution CFD (open circle). Results are shown 
for drag units #5 and #6. 
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Figure 9. Profiles of (u')(u') obtained with the proposed distributed drag force model 
(Model 3) used in conjunction with four different methods for specifying the drag coeffi- 
cient. CD(Z) (solid line); Co.buik.i (dashed line); Cx),bulk,ave (dashed-dotted line); C£>,buik,i 
(dashed-dotted-dotted line); high-resolution CFD (open circle). Results are shown for drag 
units #1 and #2. 
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Figure 9. (Continued) Profiles of (u')(u') obtained with the proposed distributed drag 
force model (Model 3) used in conjunction with four different methods for specifying the 
drag coefficient. CD(z) (solid line); CD,buik,i (dashed line); CD,buik,ave (dashed-dotted line); 
Cz?,buik,i (dashed-dotted-dotted line); high-resolution CFD (open circle). Results are shown 
for drag units #3 and #4. 
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Figure 9. (Continued) Profiles of (u')(u') obtained with the proposed distributed drag 
force model (Model 3) used in conjunction with four different methods for specifying the 
drag coefficient. CD{z) (solid line); CD.buik,i (dashed line); CD,buik,ave (dashed-dotted line); 
Cr»,buik,i (dashed-dotted-dotted line); high-resolution CFD (open circle). Results are shown 
for drag units #5 and #6. 
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Figure 10. Profiles of {u')(w') obtained with the proposed distributed drag force model 
(Model 3) used in conjunction with four different methods for specifying the drag coeffi- 
cient. CD(z) (solid line); CD,buik,i (dashed line); CD,buik,ave (dashed-dotted line); CD,buik,i 
(dashed-dotted-dotted line); high-resolution CFD (open circle). Results are shown for drag 
units #1 and #2. 
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Figure 10. (Continued) Profiles of {u')(w') obtained with the proposed distributed drag 
force model (Model 3) used in conjunction with four different methods for specifying the 
drag coefficient. CD{z) (solid line); C^buik.i (dashed line); CD,buik,ave (dashed-dotted line); 
Co.buik.i (dashed-dotted-dotted line); high-resolution CFD (open circle). Results are shown 
for drag units #3 and #4. 
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Figure 10. (Continued) Profiles of (u')(w') obtained with the proposed distributed drag 
force model (Model 3) used in conjunction with four different methods for specifying the 
drag coefficient. CD(z) (solid line); CD,buik,i (dashed line); CD,buik,ave (dashed-dotted line); 
Cz),buik,i (dashed-dotted-dotted line); high-resolution CFD (open circle). Results are shown 
for drag units #5 and #6. 
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